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a b s t r a c t

In this paper, coordination control is investigated for multi-robots to manipulate an object with a
common desired trajectory. Both trajectory tracking and control input minimization are considered for
each individual robot manipulator, such that possible disagreement between different manipulators can
be handled. Reinforcement learning is employed to cope with the problem of unknown dynamics of both
robots and the manipulated object. It is rigorously proven that the proposed method guarantees the
coordination control of the multi-robots system under study. The validity of the proposed method is
verified through simulation studies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Coordinated manipulation of multi-robots has attracted
researchers' attention as it provides better rigidity and feasibility
compared to manipulation of a single robot, yet it brings along
challenging control problems [1]. Different from control of a single
robot manipulator, a coordination scheme is needed to avoid
possible disagreement between multi-robots, which will lead to
undesired results, e.g., large internal forces [2]. Typical coordina-
tion control schemes include hybrid position/force control and
leader–follower control [3]. Hybrid position/force control consid-
ers the position of the manipulated object to be in a certain
workspace, and the internal force to be within a small range
around the origin. In comparison, the leader–follower method
introduces a leader individual, which is followed by other manip-
ulators. Regrading these two coordination control schemes, while
the former requires the separation of directions for position and
force controls [4], the latter needs multi-robots to communicate
with each other through different interfaces. Enlightened by the
idea of optimal control, i.e., to achieve the trajectory tracking and
simultaneously to penalize the control effort, we propose a
coordination scheme in this paper to avoid limitations in existing
methods. In particular, when manipulating a common object by
multi-robots, each individual aims to track a prescribed trajectory
while it complies to others by penalizing its own control effort.

This will lead to an optimization-like problem which cannot be
handled by conventional optimal control, e.g., linear quadratic
regulator (LQR) [5], due to uncertain and nonlinear system
dynamics. In the literature, reinforcement learning, also known
as adaptive dynamic programming, has been extensively studied
in the control community to address this issue [6,7].

The idea of reinforcement learning is inspired by the phenom-
ena that human beings and other animals always learn from
experience through reward and punishment results for survival
and growth [8–11]. In particular, biological experiments show that
the dopamine neurotransmitter acts as a reinforcement signal
which favors learning at the neuron level [12]. Based on reinforce-
ment learning, a control signal can be generated for an agent to
interact with unknown environments. Typically, a cost function or
a reward function is defined to describe the control objective, and
a control scheme is developed to minimize/maximize the defined
cost/reward function [13]. Therefore, a reinforcement learning
control can be developed in the form of a composition of two
parts: a critic network and an actor network. A critic network is
developed to approximate the cost function, while an actor net-
work plays a role to minimize the cost function. Reinforcement
learning control has been developed in both continuous-time and
discrete-time domains. In [14], a reinforcement learning control
has been proposed for systems in continuous time and space. In
[15], a state observer is introduced to estimate the future state for
the design of adaptive dynamic programming for unknown non-
linear continuous-time systems. In [16], a discrete-time reinforce-
ment learning control is proposed with Lyapunov stability
analysis. In [17], optimal control is proposed for unknown
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nonaffine discrete-time systems by employing adaptive dynamic
programming. Reinforcement learning control has also been
investigated in control of robots. In [18], a natural actor-critic
algorithm is adopted for the learning of proper impedance for
robots in interacting with unknown environments. In [19], the
algorithm of policy improvement with path integrals is integrated
with reinforcement learning to achieve variable impedance con-
trol. In [20], impedance adaptation for robot control is developed
based on adaptive dynamic programming proposed in [21].
Literature reviews of reinforcement learning can be found in
[22,23], which introduce the use of reinforcement learning in
feedback control and state open challenges of developing a
reinforcement learning control.

Based on the above discussions, in this paper, we will introduce
a reinforcement learning control for coordinated manipulation of
multi-robots. First, a cost function is defined to describe the
tracking objective of each individual robot manipulator and its
compliance to others. Then, the coordination problem of multi-
robots will be transformed to an optimization-like problem. A
reinforcement learning control will be designed to minimize the
defined cost function, in the presence of unknown system
dynamics. Eventually, through Lyapunov stability analysis, the
performance of the proposed method will be discussed in detail.

The contributions of this paper are highlighted as follows:

(i) the problem of multi-robots coordination is formulated such
that both the tracking objective of each individual robot
manipulator and its compliance to others are described, with
neither the separation of task spaces nor extra communica-
tion interfaces;

(ii) system dynamics are transformed to a general model similar
to that of a single robot manipulator for the feasibility of
control design; and

(iii) a reinforcement learning control is developed subject to
unknown dynamics of robot manipulators and object, which
guarantee the coordination control of multi-robots.

The rest of the paper is organized as follows. In Section 2, the
problem of coordination control under study is formulated. In
Section 3, the transformation of system dynamics and design of a
reinforcement learning control are detailed, followed by the
rigorous performance analysis. In Section 4, the validity of the
proposed method is verified through simulation studies. Section 5
concludes this paper.

2. Problem formulation

2.1. System description

The system under study includes n individual robot manipula-
tors and a rigid object, where the object is tightly grasped by the
end-effector of each robot manipulator. It is assumed that there is
no relative motion between the robot manipulators and object.

The dynamics of the object in the task space are described as

mo €p�mog ¼ f o
Io _ωþω� Ioω¼ τo ð1Þ

where mo and Io are the mass and inertia matrix of the manipu-
lated object, p and ω are the position and angular velocity of the
object, respectively, fo and τo are the force and torque applied to
the mass center of the object, respectively, and g is the gravita-
tional acceleration.

Define xo ¼ ½pT ;θT �T where _θ ¼ω, and we have _xo ¼ ½ _pT ;ωT �T .
Then, the dynamics of the object can be rewritten in the following

form [24]:

Mo €xoþCoð _xoÞ _xoþGo ¼ Fo ð2Þ

where Mo ¼ moI
0

0
Io

h i
ARm�m, Coð _xoÞ _xo ¼ 0

ω�Ioω

h i
ARm, Go ¼ �mog

0

� �
ARm, and FoðtÞ ¼ f o

τo

h i
ARm.

Property 1. The matrix Coð _xoÞ is skew-symmetric, i.e.,
ϱTCoð _xoÞϱ¼ 0, for 8ϱARm.

The forward kinematics of the i-th robot manipulator is
described by xi ¼φiðqiÞ, where xiðtÞARmi and qiARmi are posi-
tions/orientations in the Cartesian space and joint coordinates in
the joint space, respectively. Differentiating xi ¼ϕðqiÞ with respect
to time results in _xi ¼ Jr;iðqiÞ _qi, where Jr;iðqiÞARmi�mi is the Jacobian
matrix for the i-th robot manipulator. Besides, JiðxoÞ is the Jacobian
matrix which describes the kinematic relationship between the
mass center of the object and the end-effector of the i-th robot
manipulator.

Assumption 1. The Jacobian matrices Jr;iðqiÞ and JiðxoÞ are non-
singular in a finite workspace.

The dynamics of the i-th robot manipulator in the joint space
are

Mr;iðqiÞ €qiþCr;iðqi; _qiÞ _qiþGr;iðqiÞþ JTr;iðqiÞFi ¼ ur;i; i¼ 1;2;3;…;n

ð3Þ
where Mr;iðqiÞARmi�mi is the inertia matrix, Cr;iðqi; _qiÞ _qiARmi

denotes the Coriolis and Centrifugal force, Gr;iðqiÞARmi is the
gravitational force, Fi denotes the force exerted on the object by
the end-effector of the i-th robot manipulator at the interaction
point, and ur;iARmi is the control input.

By considering the Jacobian matrix Jr;iðqiÞ, the dynamics of the
i-th robot manipulator can be described in the Cartesian space as
below:

MiðqiÞ €xiþCiðqi; _qiÞ _xiþGiðqiÞþFi ¼ ui; i¼ 1;2;3;…;n ð4Þ
where

MiðqiÞ ¼ J�T
r;i ðqiÞMr;iðqiÞJ�1

r;i ðqiÞ
Ciðqi; _qiÞ ¼ J�T

r;i ðqiÞðCr;iðqi; _qiÞ�Mr;iðqi; _qiÞJ�1
r;i ðqiÞ_J r;iðqiÞÞJ�1

r;i ðqiÞ
GiðqiÞ ¼ J�T

r;i ðqiÞGr;iðqiÞ; ui ¼ J�T
r;i ðqiÞur;i ð5Þ

Property 2 (Ge et al. [25]). The matrix MiðqiÞ is symmetric and
positive definite.

Property 3 (Ge et al. [25]). The matrix _MiðqiÞ�2Ciðqi; _qiÞ is skew-
symmetric if Ciðqi; _qiÞ is in Christoffel form, i.e. ϱT ð _MiðqiÞ
�2Ciðqi; _qiÞÞϱ¼ 0, for 8ϱARmi .

The control objective of this work is to let the object move
along a desired trajectory xd while minimizing the control efforts
of all robot manipulators. In particular, we define the following
cost function:

GðtÞ ¼
Z 1

0
cðsÞ ds ð6Þ

where c(t) is an instant cost function defined as

cðtÞ ¼ ðxo�xdÞTQ1ðxo�xdÞþ _xToQ2 _xoþ
Xn
i ¼ 1

uT
r;iRiur;i ð7Þ

where Q1Z0, Q2Z0, and Ri40.

Remark 1. The rule of thumb to choose Q1 and Ri is as follows: a
larger value for Q1 indicates that a more accurate tracking
performance is expected, a larger value for Q2 indicates that a
smoother motion is desirable, and a larger value for Ri indicates
that the load of the i-th robot manipulator is expected to be
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smaller. For example, it is usual to allocate a larger load to a
“stronger” robot manipulator (with larger mass and inertia of
moment), so Ri should be given a smaller value for this robot
manipulator.

2.2. Preliminary

For approximation of a continuous function hðZÞ : Rr-R, the
following Radial Function Basis (RBF) Neural Networks (NN) are
used [26]:

hðZÞ ¼WnTSðZÞþϵ ð8Þ
where ZARr is the NN input vector,Wn is the ideal NN weight, and
ϵ is the approximation error under the ideal NN weight.
SðZÞ ¼ ½s1ðZÞ;…; slðZÞ� is a vector where si(Z) is chosen as the
Gaussian function for i¼ 1;2;…; l, which is expressed as

siðZÞ ¼ exp
�ðZ�μiÞT ðZ�μiÞ

η2i

" #
ð9Þ

where μi is the designed center for the i-th input element of the
NN, and ηi the width of the Gaussian function.

Lemma 1 (Ge and Wang [27]). Consider a positive function given by

VðtÞ ¼ 1
2 e

T ðtÞΛðtÞeðtÞþ1
2
~W

T ðtÞΓ�1ðtÞ ~W ðtÞ ð10Þ

where eðtÞ ¼ ξðtÞ�ξnðtÞ and ~W ðtÞ ¼ Ŵ ðtÞ�Wn, and ΛðtÞ ¼ΛT ðtÞ40
and ΓðtÞ ¼ΓT ðtÞ40 are dimensionally compatible matrices. If the
following inequality holds:

_V ðtÞrρVðtÞþκ ð11Þ
where ρ and κ are positive constants, then, given any initial compact
set defined by

Ω0 ¼ ξð0Þ; ξnð0Þ; Ŵ ð0Þjξð0Þ; Ŵ ð0Þ finite; ξnð0ÞAΩn
n o

ð12Þ

we can conclude that the states and weights will eventually converge
to the compact sets defined by

Ωs ¼ ξðtÞ; Ŵ ðtÞj lim
t-1

JeðtÞJ ¼ μn

e ; limt-1
J ~W J ¼ μn

~W

� �
ð13Þ

where constants

μn

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

ρλΛmin

s

μn
~W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

ρλΓmin

s
ð14Þ

with λΛmin ¼minvA ½0;t�λminðΛðvÞÞ, and
λΓmin ¼minvA ½0;t�λminðΓ�1ðvÞÞ.

3. Control design

3.1. System transformation

By applying the virtual work principle, we can obtain the
relationship between the end-effector forces Fi with the force
applied to the mass center of the object Fo. In particular, we have

ð�F1ÞTδx1þð�F2ÞTδx2þ⋯þð�FnÞTδxnþFToδxo ¼ 0 ð15Þ
Since δxi ¼ JiðxoÞδxo, we obtain

Fo ¼
Xn
i ¼ 1

JTi ðxoÞFi ð16Þ

Since €xi ¼ _J iðxoÞ _xoþ JiðxoÞ €xo, the dynamics of the i-th robot can be

redescribed as

MiðqiÞJiðxoÞ €xoþ MiðqiÞ_J iðxoÞþCiðqi; _qiÞJiðxoÞ
� �

_xoþGiðqiÞþFi ¼ ui

ð17Þ
Multiplying both sides of the above equation by JTi ðxoÞ, we have

JTi ðxoÞMiðqiÞJiðxoÞ €xoþ JTi ðxoÞ MiðqiÞ_J iðxoÞþCiðqi; _qiÞJiðxoÞ
� �

_xo

þ JTi ðxoÞGiðqiÞþ JTi ðxoÞFi ¼ JTi ðxoÞui ð18Þ
By adding the above dynamics of all the robot manipulators
together, we obtain the following combined dynamics:

Xn
i ¼ 1

JTi ðxoÞMiðqiÞJiðxoÞ €xoþ
Xn
i ¼ 1

JTi ðxoÞ MiðqiÞ_J iðxoÞþCiðqi; _qiÞJiðxoÞ
� �

_xo

þ
Xn
i ¼ 1

JTi ðxoÞGiðqiÞþ
Xn
i ¼ 1

JTi ðxoÞFi ¼
Xn
i ¼ 1

JTi ðxoÞui

ð19Þ
Considering Eq. (16) and substituting the dynamics of the object,
i.e., Eq. (2), into Eq. (19), we obtain the model of the overall system
as below:

Xn
i ¼ 1

JTi ðxoÞMiðqiÞJiðxoÞþMo

 !
€xoþ

Xn
i ¼ 1

JTi ðxoÞ MiðqiÞ_J iðxoÞ
� 

þCiðqi; _qiÞJiðxoÞ
	þCoð _xoÞ

	
_xoþ

Xn
i ¼ 1

JTi ðxoÞGiðqiÞþGo

 !
¼
Xn
i ¼ 1

JTi ðxoÞui

ð20Þ
By defining

Mðqi; xoÞ ¼
Xn
i ¼ 1

JTi ðxoÞMiðqiÞJiðxoÞþMo

Cðqi; _qi; xo; _xoÞ ¼
Xn
i ¼ 1

JTi ðxoÞ MiðqiÞ_J iðxoÞþCiðqi; _qiÞJiðxoÞ
� �

þCoð _xoÞ

Gðqi; xoÞ ¼
Xn
i ¼ 1

JTi ðxoÞGiðqiÞþGo

u¼
Xn
i ¼ 1

JTi ðxoÞui ð21Þ

the above system model can be rewritten as

Mðqi; xoÞ €xoþCðqi; _qi; xo; _xoÞ _xoþGðqi; xo; _xoÞ ¼ u ð22Þ
According to Properties 1–3, we immediately obtain the

following properties for the combined system (22).

Property 4. The matrix Mðqi; xoÞ is symmetric and positive definite.

Property 5. The matrix _Mðqi; xoÞ�2Cðqi; _qi; xo; _xoÞ is skew-
symmetric, i.e. ϱT ð _Mðqi; xoÞ�2Cðqi; _qi; xo; _xoÞÞϱ¼ 0, for 8ϱARm.

Proof.
_Mðqi; xoÞ�2Cðqi; _qi; xo; _xoÞ

¼
Xn
i ¼ 1

ð2JTi ðxoÞMiðqiÞ_J iðxoÞþ JTi ðxoÞ _MiðqiÞJiðxoÞÞþ _Mo

�
Xn
i ¼ 1

2JTi ðxoÞðMiðqiÞ_J iðxoÞþCiðqi; _qiÞJiðxoÞÞ�2Coð _xoÞ

¼
Xn
i ¼ 1

JTi ðxoÞð _MiðqiÞ�2Ciðqi; _qiÞÞJiðxoÞ�2Coð _xoÞ ð23Þ

Recalling Properties 3 and 1 of robot manipulators and object
dynamics, we can obtain

xTo ð _Mðqi; xoÞ�2Cðqi; _qi; xo; _xoÞÞxo

¼
Xn
i ¼ 1

ðJiðxoÞxoÞT ð _MiðqiÞ�2Ciðqi; _qiÞÞJiðxoÞxoþxTo ð _Mo�2Coð _xoÞÞxo
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¼
Xn
i ¼ 1

xTi ð _MiðqiÞ�2Ciðqi; _qiÞÞxi�2xToCoð _xoÞxo ¼ 0 ð24Þ

for 8xoARm. Replacing xo by ϱ completes the proof.□

Similarly as in [20], we consider the desired trajectory generated
by the following system:

_z ¼Uz

xd ¼ Yz

(

where zARm is an auxiliary variable, UARm�m and YARm�m are
known matrices, and (U,Y) is observable. Then, the instant cost
function defined in (7) becomes

cðtÞ ¼ xTo xTd
� � Q1 �Q1

�Q1 Q1

" #
xo
xd

" #
þ _xToQ2 _xoþ

Xn
i ¼ 1

uT
r;iRiur;i

¼ xTo zT
h i Q1 �Q1Y

�YTQ1 YTQ1Y

" #
xo
z


 �
þ _xToQ2 _xoþ

Xn
i ¼ 1

uT
r;iRiur;i

ð25Þ
Denote ξ¼ ½xTo ; zT ; _xTo �T , u0 ¼ ½uT

1;u
T
2 ;…;uT

n�T , R0 ¼ diag½ðJr;iðqiÞ
RiJ

T
r;iðqiÞÞ� for i¼ 1;2;…;n, and

Q ¼
Q1 �Q1Y 0

�YTQ1 YTQ1Y 0
0 0 Q2

2
64

3
75 ð26Þ

Then, we obtain

cðtÞ ¼ ξTQξþu0TR0u0 ð27Þ
Denote J0 ¼ ½JT1; JT2 ;…; JTn�T . From the definition of u in (21), we know
that u¼ J0Tu0. Therefore, the above instant cost function is finally
written as

cðtÞ ¼ ξTQξþuTRu ð28Þ
where R¼ J0†R0J0†T with J0† being the pseudoinverse of J0.

Following the transformation in this subsection, the coupled
dynamics of multi-robot manipulators and object are described in
a unified form, i.e., Eq. (22). Then, it becomes straightforward to
design a control for such a general system to minimize the cost
function (6). Since Mðqi; xoÞ, Cðqi; _qi; xo; _xoÞ, and Gðqi; xoÞ are
unknown and typically nonlinear due to the involvement of robot
and object dynamics, we develop reinforcement learning for the
control design of system (22), as detailed in the following
subsection.

3.2. Reinforcement learning

First, a critic network is used to approximate the cost function
at current state, i.e.,

Υ ðtÞ ¼WnT
c ScðZcÞþϵc

Υ̂ ðtÞ ¼ Ŵ
T
c ScðZcÞ ð29Þ

where Zc ¼ ξ, and other denotations follow NN denotations in
Section 2.2. An ideal approximation is achieved if the following
error is eliminated:

Ec91
2 ðc�Ŵ

T
c
_Sc Þ2 ð30Þ

Therefore, the updating law for the critic network is designed
using the gradient descent method, as below:

_̂W c ¼ �σc
∂Ec
∂Ŵ c

¼ σcðc�Ŵ
T
c
_ScÞ _Sc ð31Þ

where σc40 is the learning rate for the critic network.

Second, we introduce an action network to achieve the control
objective discussed in Section 2.1. Define e¼ xo�xd as the tracking
error, and the corresponding Lyapunov function candidate is
V1 ¼ 1

2e
Te. Its time derivative is

_V 1 ¼ eT _e

¼ eT ð _xo� _xd�K1eþK1eÞ ð32Þ
where K1 is a positive definite matrix. By defining _xr ¼ _xd�K1e and
ev ¼ _xo� _xr , we have

_V 1 ¼ �eTK1eþeTev ð33Þ
Considering the system dynamics (22) and another Lyapunov
function candidate V2 ¼ 1

2e
T
vMev, we have

_V 2 ¼ 1
2 e

T
v
_MevþeTvM _ev

¼ 1
2 e

T
v
_MevþeTv ð�C _xo�Gþu�M €xrÞ

¼ eTv ð�M €xr�C _xr�GþuÞ ð34Þ
where Property 5 is applied. It is trivial to design an ideal control
un ¼M €xrþC _xrþG�e�K2ev, where K2 is a positive definite matrix.
However, since M, C and G are unknown, an action network is
introduced to approximate the unknown parts of control input, as
follows:

M €xrþC _xrþG¼WnT
a SaðZaÞþϵa ð35Þ

where Za ¼ ½qi; _qi; xo; _xo; _xr ; €xr �. Then, the ideal control input
becomes

un ¼WnT
a SaðZaÞþϵa�e�K2ev ð36Þ

and the actual control is designed as

u¼ Ŵ
T
aSaðZaÞ�e�K2ev ð37Þ

Considering a Lyapunov function candidate for both e and ev, i.e.
V ¼ V1þV2, we have

_V ¼ _V 1þ _V 2 ¼ �eTK1e�eTvK2evþeTv ð ~W
T
aSaðZaÞ�ϵaÞ ð38Þ

where ~Wa ¼ Ŵ a�Wn

a is the approximation error of NN weights.
Since the objective of updating law of ~Wa is to minimize the
approximation error ~Wa itself and the estimated cost function Υ̂ ,
we define an error variable ea ¼

Pm
i ¼ 1

~W
T
a;iSaþkΥ Υ̂ , where ~Wa;i is

the i-th column of ~Wa and kΥ is a positive scalar. Again, using the
gradient descent method, we obtain the updating law of action
network as below:

_̂W a;i ¼ �σaðŴ
T
a;iSaþkΥ Υ̂ ÞSa ð39Þ

where σa is a designed learning rate for the action network.

3.3. Stability analysis

Consider a Lyapunov function candidate as below:

V ¼ V1þV2þVcþVa ð40Þ
where Vc ¼ 1

2
~W

T
c
~Wc and Va ¼ 1

2e
T
aea. Its time derivative is

_V ¼ _V 1þ _V 2þ _V cþ _V a

¼ �eTK1e�eTvK2evþeTv ð ~W
T
aSa�ϵaÞþ ~W

T
c
_~W cþeTa _ea

¼ �eTK1e�eTvK2evþeTv ð ~W
T
aSa�ϵaÞ

þ ~W
T
c
_~W cþeTa

Xm
i ¼ 1

_̂W
T
a;i

∂ea
∂Ŵ a;i

Þ
 

¼ �eTK1e�eTvK2evþeTv ð ~W
T
aSa�ϵaÞ

þ ~W
T
c
_~W cþea

Xm
i ¼ 1

_̂W
T
a;iÞSa

 
ð41Þ
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Considering the updating law for the action network, i.e., Eq. (39),
we have

_V ¼ �eTK1e�eTvK2evþeTv ð ~W
T
aSa�ϵaÞþ ~W

T
c
_~W c

�σaS
T
aSaea

Xm
i ¼ 1

ðŴ T
a;iSaþkΥ Υ̂ Þ

¼ �eTK1e�eTvK2evþeTv ~W
T
aSa�eTvϵaþ ~W

T
c
_̂W c

�σaS
T
aSaea

Xm
i ¼ 1

ðWnT
a;i SaþeaÞ

¼ �eTK1e�eTvK2evþeTv ~W
T
aSa�eTvϵaþ ~W

T
c
_̂W c�σaS

T
aSae

2
a

�σaS
T
aSaea
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Considering the updating law for the critic network, i.e., Eq. (31),
we have
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Substituting inequalities
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to the above inequality leads to
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In accordance with the definition of V ¼ V1þV2þVcþVa with
V1 ¼ 1

2e
Te, V2 ¼ 1

2e
T
vMev, Vc ¼ 1

2
~W

T
c
~Wc and Va ¼ 1

2e
T
aea, we have

_V r�ρVþκ ð46Þ

where

ρ¼min 2K1;2λM minðK2� IÞ;σcβSc �k2Υ ;2 σaβSa �
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where εa, εc, βc, and βa denote the upper bounds of ϵa, _ϵc, Wn

c , and
Wn

a , respectively. In addition, βSc r _S
T
c
_Sc and βSa rSTaSa.

According to Lemma 1, if the following conditions are satisfied:

K2� I40

σcβSc �k2Υ 40

σaβSa �
σaþ2

2
40 ð48Þ

then, all the closed-loop signals, including e, ev, ~Wc and ea, will
remain semi-globally uniformly ultimately bounded. For comple-
teness, multiplying _V ¼ �ρVþκ by eρt , we can obtain

d
dt
ðeρtVÞrκeρt ð49Þ

By integrating it, we can obtain

Vr Vð0Þ�κ
ρ

� 

κe�ρtþκ

ρ
rVð0Þþκ

ρ
ð50Þ

Therefore, signals e, ev, ~Wc and ea remain in the compact set
Ω1≔fχ j Jχ Jrμrg and finally they will converge to the conver-
gence compact set Ω2≔fχ j Jχ Jrμcg, where

μr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Vð0Þþκ

ρ

� 
s
; μc ¼

ffiffiffiffiffiffi
2κ
ρ

s
ð51Þ

From definitions of ρ and κ in Eq. (47), we find that sizes ofΩ1 and
Ω2 can be adjusted by choosing different values of design para-
meters, e.g., K1, K2, σa, and σc. They can be made very small but
other effects of improper selection of design parameters should
also be considered.

4. Simulation study

In this section, simulation study is conducted to verify the
validity of the proposed method. In particular, two 2-degrees-of-
freedom (2-DoF) planar manipulators coordinate to move an
object together along a desired trajectory. These two manipulators
have same parameters, which are given in Table 1, wheremi, li, and
Izi, i¼1, 2, represent mass, length, and moment of inertia about the
axis that comes out of the page passing through the center of
mass, respectively. The object under consideration is a square with
length l¼0.1 m, mass mo ¼ 0:1 kg, and moment of inertia
Io ¼ 0:1 kg m2. The desired trajectory of the mass center of the
object is xd ¼ ½0:1 cos ðtÞ0:1 sin ðtÞ0�T , which indicates that no rota-
tion is expected while the translation motion is a circle. It is

Table 1
Parameters of each robot manipulator.

Parameter Description Value

m1 Mass of link 1 2.00 kg
m2 Mass of link 2 0.85 kg
l1 Length of link 1 0.30 m
l2 Length of link 2 0.30 m
Iz1 Moment of inertia of link 1 0.05 kg m2

Iz2 Moment of inertia of link 2 0.02 kg m2
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generated by Eq. (25) with

U ¼
0 �1 0
1 0 0
0 0 0

2
64

3
75; Y ¼ 0:1I ð52Þ

The initial position and velocity of the object are xoð0Þ ¼ ½0 0 0�T
and _xoð0Þ ¼ ½0 0 0�T , respectively.

Denote joint angles of the first and second robot manipulators
as q1 and q2, and q3 and q4, respectively. Correspondingly, posi-
tions of end-effectors of the first and second robot manipulators
are x1 and x2, and x3 and x4, respectively. Then, we have the
kinematic relationship from the joint space of each robot manip-
ulator to its corresponding Cartesian space, as below:

x1 ¼ d1þ l1 cos q1þ l2 cos ðq1þq2Þ
x2 ¼ l1 sin q1þ l2 sin ðq1þq2Þ

x3 ¼ d2þ l1 cos q3þ l2 cos ðq3þq4Þ

x4 ¼ l1 sin q3þ l2 sin ðq3þq4Þ ð53Þ

where ½d1;0�T and ½d2;0�T are positions of bases of two robot
manipulators. For the kinematic relationship from the end-effector
of each robot manipulator to the mass center of the object, we
have

xo;1 ¼ l
2 cos θþx1

xo;2 ¼ l
2 sin θþx2

xo;1 ¼ � l
2 cosθþx3

xo;2 ¼ � l
2 sinθþx4 ð54Þ
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Fig. 1. Trajectories of the mass center of the object (top and middle: translation; bottom: rotation).
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Fig. 2. Three components of control input.
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Therefore, the Jacobian matrices from the joint space of each robot
manipulator to its corresponding Cartesian space are

Jr;1ðqÞ ¼
� l1 sin q1� l2 sin ðq1þq2Þ � l2 sin ðq1þq2Þ
l1 cos q1þ l2 cos ðq1þq2Þ l2 cos ðq1þq2Þ

" #

Jr;2ðqÞ ¼
� l1 sin q3� l2 sin ðq3þq4Þ � l2 sin ðq3þq4Þ
l1 cos q3þ l2 cos ðq3þq4Þ l2 cos ðq3þq4Þ

" #
ð55Þ

The Jacobian matrices from the end-effector of each robot
manipulator to the mass center of the object are

J1ðxoÞ ¼
1 0 l

2 sinθ

0 1 � l
2 cosθ

" #

J2ðxoÞ ¼
1 0 � l

2 sin θ

0 1 l
2 cosθ

" #
ð56Þ

For detailed dynamic models of robot manipulators, readers
may refer to [25]. For the critic network, centers are evenly
distributed in ½�1;1�, the variance is 50, and the corresponding
number of NN nodes is 210. For the actor network, centers are also
evenly distributed in ½�1;1�, the variance is 100, and the number
of NN nodes is 216. The initial NN weights are all set as zeros. Other

parameters are set as σa ¼ σc ¼ 0:1, K1 ¼ 10I, K2 ¼ 5I, and kΥ ¼ 0:2.
A white Gaussian noise of power 0 dBW is added into the
control input.

Simulation results are shown in Figs. 1–4. Fig. 1 demonstrates
that the trajectory of the mass center of the object tracks the
desired trajectory. Fig. 2 illustrates that the control input is
guaranteed to be bounded and it becomes very small when the
trajectory tracking in Fig. 1 is achieved. As discussed in the
Introduction, since the control input is penalized in the proposed
method, it leads to compliance of each robot manipulator with
others when there exists disagreement. Besides, norms of esti-
mates of NN weights for critic and actor networks are shown in
Fig. 3, which are found to be bounded and eventually converge to
certain constants. Correspondingly, from Fig. 4, it is found that the
instant cost function defined in Eq. (7) reduces significantly with
respect to time. These results well demonstrate that the proposed
control achieves the tracking performance of the object manipu-
lated by multi-robots, while the compliance of each individual
robot manipulator is also guaranteed.

5. Conclusion

In this paper, we have investigated the control problem for
multi-robots coordinated manipulation. By considering both the
dynamics of the object and robot manipulators, we have obtained
a combined system model which is feasible for the control design.
To address the issue of unknown dynamics, we have employed
reinforcement learning and developed two neural networks for
the control design. Lyapunov's direct method has been used for
the performance analysis of the closed-loop system under the
proposed control. Two-robots co-manipulation has been consid-
ered in simulation to verify the effectiveness of the proposed
control in that trajectory tracking of the object is achieved and the
control effort of each manipulator is minimized.
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